
1. Lecture 1, Brian Shin, 6/1
sec:lect1

Goal of this seminar is to introduce the “Langlands philosophy”. What is this? The
idea is to understand the number field extensions of K in terms of the arithemtic of
K . What does vague statement mean? Note that we are largely following

garbanati
[Gar81] for

the first few lectures.
First, we interpret the arithmetic of a number field K to mean the study of primes

of OK , the ring of integers of K (the integral closure of Z in K ).

Example 1. The arithmetic of K is determined by the group

Div(K ) = “group of divisors of K”

= "Free abelian group generated by primes of K".

There exists an exact sequence describing Div(K ):
0→ O∗K → K ∗ → Div(K ) → Cl(K ) → 0.

It is a classical fact in algebraic number theory that the Galois extensions L/K are
determined by the set

Spl(L/K ) =
{
p ⊂ OK |p splits completely over L

}
.

Where by Spl(L/K ) we mean the following: Given L/K an extension of number fields,
and p ⊂ OK a prime ideal, then pOL = P

e1
1 . . .P

er
r is a unique factorization into prime

ideals of OL (since OL is a Dedekind domain) with fi = [OL/Pi : OK /p]. We say p

splits completely if all the e1 = . . . = er = f1 = . . . = fr = 1.
We now offer a proof sketch of this fact. Let L,L ′ be two Galois extensionf of K .

These two extensions fit into a diagrams

LL ′

L L ′

K
We also have the containments Spl(L/K ) ⊇ Spl(LL ′/K ), Spl(L ′/K ) ⊇ Spl(LL ′/K ),

and their intersection equaling Spl(LL ′/K ).
By a theorem of Frobenius, if L/K is Galois, then Spl(L/K ) has density 1/[L : K ]

in the set of all primes of K (where it’s up to you to interpret what we mean by
density). So Spl(L/K ) = Spl(L ′/K ) implies [L : K ] = [LL ′ : K ] = [L ′ : K ] and hence
L = L ′

Remark: The use of densities implies that it sufficies to know Spl(L/K ) up to a
finite set.

We can refine our goal slightly
(1) Classify finite Galois extensions of K in terms of the arithmetic of K .
(2) For a given Galois extension L/K describe Gal(L/K ) in terms of the arith-

metic of K .
Recall: Let L/K be a finite extension, p ⊂ OK a prime ideal which factors in OL as

pOL = P
e1
1 . . .P

er
1 .

If L/K is Galois, then let 𝜎 ∈ Gal(L/K ) be an element of the Galois group. The
group acts on prime ideals of L by 𝜎P = {𝜎(x) |x ∈ P}, and permutes the primes
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lying over p. This defines a transitive group action of Gal(L/K ) on the set of the Pi

over p. In particular, this implies that e1 = . . . er = e and f1 = . . . = fr = f . For each
of these Pi we have a canonical surjection

Fix(Pi ) → Gal(^ (Pi )/^ (p)) = Z/f Z

Fact, if e = 1 this is an isomorphism. So for any prime living above p there is a
canonical generator of the group fixing the prime Pi . Call this canonical element
FrobPi ∈ Gal(L/K ).

Note: This condition that e = 1 is necessary, but no so bad. There are only going
to be a finite number of ramified primes. So again, with respect to densities we should
be alright making this assumption.

All of the FrobPi are conugate in Gal(L/K ), and hence p ⊂ OK determines a
canonical conjugacy class Frobp ⊂ Gal(L/K ). Another example of the arithmetic of
K determining the structure of the extension L/K is the following proposition:

Proposition 1. An unramified prime p ⊆ OK splits completely in L if and only if
Frobp = {Id}.

Example 2. Consider the field extension Q(
√
d )/Q with d a square free integer. Let

Δ =

{
d if d ≡ 1 mod 4
4d else

Note: In this case, Δ is the discriminant of this field extension.
Fact: Frobp =

(
Δ
p

)
, the usual Legendre symbol.

Fact: p is unramified in Q(
√
d ) if and only if p ∤ Δ

It can be shown that the association of Frobenius map in this case factors through
(Z/ΔZ)×.

{p unramified }
Frobp //

((

Gal(Q(
√
d )/Q)

(Z/ΔZ)×

OO

With a little more work, this factorization is shown to be equivalent to the classical
statement of quadratic reciprocity.

We now want to accomplish the two goals laid out earlier for all field extensions.
This is still an open question in general, but some work has already been done in
special cases. In particular, class field theory accomplishes this goal for finite abelian
extensions of L/K of number fields. One of the aspects of the Langlands program is
to extend this analysis to non-abelian extensions.

2. Lecture 2, Brian Shin, 6/8
sec:lect2

The goal for this lecture is to discuss class field theory over Q. Lets remember the
goals:

Start with a number field K .

(1) Classify the Galois extensions of K in terms of the arithmetic of K .
(2) Given a Galois extension L/K , realize Gal(L/K ) in terms of the artihmetic

of K .
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(3) Given a Galois extension L/K , study the decomposition of primes of K in
terms of the arithmetic of K .

We’ll tackle these questions for the specific case of abelian extensions of Q in this
lecture.

Definition 1. Themth cyclotomic field Qm (notation from Garbanati) is the extension
Q(e 2𝜋i/m).

A couple facts about the Galois theory of Qm :

(1) Qm is the splitting field of xm − 1.
(2) Gal(Qm/Q) = (Z/mZ)× = Cm , where the equality is taking the residue n̄ to

the automorphism taking Z ↦→ Zn .

The arithmetic of Qm = Z[Z].
For any prime p, let fp be the smallest f ∈ N such that p f ≡ 1 mod m/pap (m) (if

p ∤ m then this is easier to describe). Then p factors over Qm as

p = (P1 . . .Pg )ap (m)

and each Pi has inertial degree fp .

Theorem 1. Fore any finite abelian extension L/Q, there is a positive integer m and an
embedding L ⊂ Qm .

This theorem is by no means obvious (really hard, Kronecker-Weber theorem).
This will allow us to resolve our goal of solving the above 3 problems.

Definition 2. L/Q abelian. If L ⊆ Qm , we say m is a defining modulus of L. The
smallest defining modulus is called the conductor fL of L.

Observe Qm ∩ Qn = Qgcd(m,n) . In particular, any L/Q abelian can be realized as

the fixed field as the fixed field QIL,m
m for some modulus m.

Note that this actually resolves our questions. . .
Cm = (Z/mZ)× is part of arithmetic of Q. This is particularly trivial in this case,

because any prime number is an element of Cm by considering its modulus mod m.
So what are the resolutions?

Classify abelian extensions of Q: start with m a modulus, and take IL,m ⊆ Cm .
Given the abelian extension L/Q realize Gal(L/Q):
If L/Q corresponds to IL,m ⊆ Cm . then we have the short exact sequence:

1→ IL,m → Cm → Gal(L/Q) → 1

Some people call this “reciprocity”, and the last map is denote in this case to be
(L/Q/−), the Artin symbol. Note about why (Z/mZ)× is arithmetic because we can
think of the map:

Z
{
p : p ∤ m primes

}
→ (Z/mZ)×

p ↦→ p̄

Ramification: Let L/Q Abelian with defining modulus m. If p ∤ m, then p is
unramified in L. In fact we have the Conductor-Ramification theorem

Theorem 2. Let L/Q be Abelian. A prime number p ramifies in L if and only if p |fL .
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Another number with this property is the discriminant. There’s a theorem that
says these two things are related. (they have the same prime factors)

Decomposition of primes:
Cm −→ Gal(L/Q)

Theorem 3. Let L/Q be an Abelian extension with modulus m. For p a prime number, and
p ∤ m then the order of

(
L/Q,p

)
∈ Gal(L/Q) is the inertia degree of p .

In particular, if p ∤ m then p splits completely in L if and only if
(
L/Q,p

)
= 1 if

and only if
(
L/Q,p

)
∈ IL,m .

Example 3. Quadratic reciprocity says:(
p∗

q

)
=

(
p
q

)
where p ,q are distinct primes such that p∗ = (−1)

p−1
2 p . Fact: Q(√p) ⊂ Qp , and it’s the

fixed field of
(
(Z/pZ)×

)2 ⊆ (Z/pZ)×(
p∗

q

)
= 1⇐⇒ q splits completel in Qp ⇐⇒

⇐⇒ q ∈
(
(Z/pZ)×

)2

Remark 1. Using the moduli is annoying because this is a non-canonical choice. We
can define the defining one, but when comparing different abelian extensions we need
to start using non-canonical moduli and this stuff goes terribly.

Also note that all abelian extensions of Q arise via special values of f (z ) = e 2𝜋i z .
Next time: Class field theory over a general number field.

3. Lecture 3, Brian Shin, 6/15
sec:lect3

Recall the goals of class field theory: Let K be a number field, we want to

(1) Classify the abelian extensions of K in terms of the arithmetic of K .
(2) Given an abelian extension L/K , we want to realize the Galois group

Gal(L/K ) in terms of the arithmetic of K .
(3) Given an Abelian extension L/K , we want to study the decomposition of

primes of K in terms of the arithmetic of K .

We achieved this solution over Q by leveraging the Kronecker-Weber theorem that
any abelian extension is contained in a cyclotomic field extension Qm = Q(Zm). Now
we will find suitable replacements for all the various constructions seen before in the
new setting when the base of our extensions of a general numberfield K instead of Q.

Let K be a number fields

Definition 3. A prime of K is an equivalence class of valuations on K .

Example 4. For p a prime ideal and an element a, the functions

∥a∥ = |OK /p|ap (a)

Defines a prime. These are called finite primes (i.e. p ∤ ∞).

Example 5. For a complex embedding 𝜎 : K → C, the function ∥a∥ = |𝜎a | defines a
prime p𝜎 . These are infinite primes (i.e. p𝜎 |∞). If 𝜎(K ) ⊂ R, we say p𝜎 is real.



5

Fact: All primes of K are of this form. This is a fairly standard fact from a first
course in algebraic number theory.

Definition 4. A modulus of K is a formal product

m = m0 ·m∞
where m0 is an ideal of OK and m∞ is a collection of infinite real primes of K .

Remark: This will play the role of m from before.

Definition 5. For m let

S (m) =
{

primes that divide m
}

I S (m)K = free abelian group generated by finite primes p ∉ S (m)

RS (m)K = subgroup generated by
a
b

with a ≡ b mod m0, and 𝜎

(a
b

)
> 0 if p𝜎 | m∞

Cm = I S (m)K /RS (m)K

Example 6. For K = Q and m = m ·∞ where m is a positive integer, and∞ corresponds
to the usual inclusion Q ↩→ R.

S (m) = {prime divisors of m} ∪ {∞}

I S (m)Q =

{a
b
∈ Q× | a,b positive,gcd(a,m) = gcd(b ,m) = 1

}
RS (m)Q =

{a
b
∈ I S (m)Q | a ≡ b mod m

}
Cm = (Z/mZ)×

In the case of general number field, Cm will play the role of (Z/mZ)×.

Let L/K be a finite Abelian extension. Recall that if p is a finite prime of K
unramified in L, then there is a unique element

Frobp ∈ Gal(L/K )

such that
Frobp (x) ≡ x |p | mod P

for any x ∈ OL , P | p.
For any finite set S of prime ideals of K that includes the primes that ramify in L,

we can define:

(L/K ,−) : I SK −→ Gal(L/K )
p ↦→ Frobp.

We call this map the Artin map.
Observe that for P a prime ideal of L unramified over p with inertia degree f let

NmL/K (P) = pf

Remark 2. We have seen already how to define a norm map Nm : L → K , and it can
be shown that the above definition matches with the norm calculated element-wise on
the elements of P.
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Then (L/K ,NmL/K (P)) = (L/K ,p) f = Frobfp = id .
Thus Nm(I SK ) ⊆ ker((L/K ,−)).
Fact: The Artin map is always surjective. A consequence of this is that for a

modulus m, there is a field K (m)/K such that ker((K (m)/K ,−)) = Rm
K .

We would therefore know that Cm
∼−→ Gal(L/K ). We would call this stand-in for

Qm the Ray class field of m.
Let K be a number fields. The three main theorems of Class field theory are:

Theorem 4 (Existence). For any modulus m, there is a finite abelian extension K (m)/K
that is unramified outside S (m) and such that the kernel of the Artin map (K (m)/K ,−) is
RS (m)K .

Theorem 5 (Completeness). For any finite abelian extension L/K there is a modulus m
with L ⊂ K (m).

Theorem 6 (Reciprocity). For any fjinite abelian extension L/K of modulus m, the kernel
of the Artin map

(L/K ,−) : I S (m)K −→ Gal(L/K )

is the image of the norm map NmL/K (I S (m)L ).

Remarks:

• Modern formulation involved using idele groups
• Modern proofs proceed via local to global principals
• In the local case, can proceed via

– Brauer groups and central simple algebras
– Cohomology of Galois groups
– Explicit constructions via Lubin-Tate formal groups

• In the global case, there is no explicit construction of K (m)
• There is a formulation in terms of L-functions.

4. Lecture 4, Matej Penciak, 7/6
sec:lect4

The goal of the next few lectures is to understand some of the remarks that were
made at the end of the last talk. In particular:

• A formulation of class field theory in terms of Adeles and Ideles
• A formulation of class field theory in terms of L-functions
• A local-to-global derivation of class field theory

With so many paths forward it’s hard to decide which to tackle first (with the eventual
goal of arriving at the Langlands program), so lets try to tackle the ideas as they
appeared chronologically in history. To get an idea about the history of the subject,
we follow

history_of_cft
[Con]. Taking stock of all that we’ve done, we’ve essentially arrived at the

formulation and results of class field theory known to Takagi. It’s been a bit, so in
order to state the results we know so far lets recap a few definitions:

What followed was a recap of the last lecture, recalling I S (m)K , RS (m)K , Cm.

Define a ideal group to be a subgroup of I S (m)K which contains RS (m)K (so that there
is a bijection between ideal groups for a fixed modulus m and subgroups of Cm).

For an abelian extension L over K , define the subgroup Nm(L/K ) of I S (m)K (for
S (m) containing the primes ramifying in L) as the group generated by the norms of
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ideals from OL . Furthermore, define the ideal group Hm (L/K ) in I S (m)K as

Hm (L/K ) = RS (m)K · Nm(L/K ).

It follows that

[I S (m)K : Hm (L/K )] ≤ [L : K ]
and Takagi defined L as a class field of K to be field extensions L of K for which there
exists a modulus m for which the above is an equality. With these definitions in hand,
we can state the main results of class field theory as proven by Takagi:

Theorem 7. Let K be a number field

(1) To each ideal group H , there is a unique class field extension of K (existence)
(2) If H ⊆ Cm corresponds to the extension L/K , then Gal(L/K ) is isomorphic to

Cm/H . (isomorphism)
(3) Any finite abelian extension is a class field. (completeness)
(4) If H1,H2 are two ideal gropus for a fixed modulus, and L1,L2 their associated ex-

tensions of K , then H1 ⊆ H2 ⇔ L1 ⊆ L2 (comparison)
(5) The primes of K appearing in the conductor (minimal modulus of L) fL/K are the

ramified places for the field extension L/K (conductor)
(6) Any p ∤ m is unramified in L, and the residue field degree [OL/p : OK /p] is the

order of p in Cm/H . (decomposition)

Let us make some remarks about the above theorem

Remark 3.

(1) The existence theorem Takagi proves is more general than the existence the-
orem that Brian stated in the last lecture, which corresponds to the existence
theorem for the trivial subgroup {id } ⊆ Cm.

(2) The isomorphism theorem proven by Takagi is non-explicit. The reciprocity
theorem from Brian’s lecture implies the isomorphism with the explicit iso-
morphism being given by the reciprocity map (L/K ,−). It is not until Artin’s
proof of his reciprocity theorem that the above isomorphism can be made
explicit, and once the isomorphism is selected the decomposition theorem
becomes a simple corollary. Artin’s original motivation for the proof of his
reciprocity theorem was a study of his so-called Artin L-functions. In fact the
reciprocity theorem will be seen to be equivalent to a certain equivalence of
L-functions which will be the first new topic we cover next time.

(3) The comparison theorem is one of the motivations for getting rid of the mod-
uli m in class field theory, which is achieved by stating all the results in the
context of the Adeles/Ideles.

5. Lecture 5, Matej Penciak, 7/13
sec:lect5

The goal of the next few lectures on L-functions is to tackle the following topics in
order

(1) Dirichlet L-series (their motivation, definition, and analytic continuation).
(2) Class field theory over Q in terms of L-functions.
(3) Weber/Hecke L-series.
(4) Artin reciprocity and class field theory over a general number field K .
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To begin, we will start with Dirichlet L-series.
Dirichlet wanted to prove his theorem on infinitely many primes in arithmetic

progression. The idea of the proof is the copy the proof that there are infinitely many
primes via the statement that Z (s ) has a pole at s = 1.

Write

Z (s ) =
∞∑︁
n=1

1
ns

=
∏

p prime

(
1 − p−s

)−1

Then Z (s ) having a pole at s = 1 implies that

log Z (s ) =
∑︁
p

1
ps
+O (1) as s → 1

Hence
∑
p

1
p diverges. In order to differentiate the different conjugacy classes of primes

in (Z/nZ)× = Cn we introduce characters 𝜒 : Cn → C×. Denote the group of charac-
ters on Cn by Ĉn .

Any character 𝜒 ∈ Cn can be extended to a multiplicative function (which we
denote by the same character via abuse of notation) 𝜒 : N→ C via

𝜒 (m) =
{
𝜒 (m̄) m̄ . 0 mod n
0 m̄ ≡ 0 mod n

With this extension, define the Dirichlet L-function associated to 𝜒 By

L(s , 𝜒) =
∞∑︁
n=1

𝜒 (n)
ns

which converges absolutely for real part greater than 0. Also in that half-plane the
above infinite sum can be decomposed (via the strong multiplicativity of 𝜒) into the
Euler product formal

L(s , 𝜒) =
∏

p prime

(
1 − 𝜒 (p)p−s

)−1
.

In order to prove the theorem on arithmetic progression the main results established
are

Lemma 1. Let 𝜒 : (Z/nZ)× −→ C× be a character.

(1) If 𝜒 is not the trivial character, than L(s , 𝜒) is analytic for Re(s ) > 0.
(2) If 𝜒 = 𝜒0 the trivial character, then L(s , 𝜒0) has a pole at s = 1.
(3) For 𝜒 ≠ 𝜒0, then L(1, 𝜒) ≠ 0.

Before we remark on the above results, the remaining part of the proof of Dirichlet’s
theorem goes as follows: The goal is to prove∑︁

p≡k mod n

1
ps

diverges for s → 1. The indicator function for the k conjugacy class ins (Z/nZ)× is
not a character on the finite group, but it is a conjugacy invariant function so it can
be written as linear combination of characters 𝛿k =

∑
i ci 𝜒 i . Furthermore, c0 ≠ 0 by

considering the inner product ⟨𝛿k , 𝜒0⟩. As s → 1 then∑︁
p≡k mod n

1
ps

= c0
∑︁
p

1
ps
+

∑︁
𝜒 i≠𝜒0

ci

(∑︁
p

𝜒 i (p)
ps

)
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diverges because the summands on the right hand side are equal (up to constant) to
logL(s , 𝜒0) and logL(s , 𝜒 i ) which diverge (and c0 ≠ 0) and remain finite and non-zero
as s → 1.

The follow are some remarks on the above Lemma

Remark 4. As far as my understanding goes, there is no interesting arithmetic content
in the first part of the theorem. The second part of the theorem is not hard to prove,
it follows from the factorization of the L-function as

L(s , 𝜒0) =
∏
p |n
(1 − p−s ) · Z (s )

which has a pole at s = 1 since the first product is finite and non-zero. This is not
difficult to show, but has some interesting arithmetic content, and is the first example
of a factorization of L/Z -functions we have seen. The final part seems to be the hardest
to establish.

Though the following is not crucial to establish class field theory over Q, we include
it for completeness. We will not show that L(s , 𝜒) can be extended to a meromorphic
function on C analytic away from s = 1. This is established in an argument mirroring
Riemann’s original argument on the analytic continuation of the Z -function which is
established via a functional equation relating Z (s ) and Z (1 − s ). Because it serves as
a guide, lets understand this argument first.

The argument can be divided into six main steps

(1) Express Z (s ) as an infinite sum

Z (s ) =
∞∑︁
n=1

n−s

which converges for Re s > 1.
(2) Extend Z (s ) to Re s > 0 except for a pole at s = 1. As far as I can tell, the

various arguments used for Z (s ) and other L-functions for which this property
holds do not have any interesting arithmetic content. In the particular case
for Z (s ), it amounts to writing 1/(1 − s ) in a clever way in the expression
Z (s ) − 1/(1 − s ) which converges for Re s > 0.

(3) Define Λ(s ) = 𝜋−s/2Γ( s2 )Z (s ). It will be Λ that satisfies a clean functional
equation relating Λ(s ) to Λ(1− s ) (which would establish analyticity for Z for
Re s < 0.)

(4) Write Λ(s ) as the Mellin transform

Λ(s ) = 1
2

∫ ∞

0
(\ (t ) − 1) t s2−1 dt

where \ (t ) is the Riemann \-functions

\ (t ) =
∞∑︁

n=−∞
exp(−𝜋n2t ).

Sometimes it is worth writing the Mellin transform in terms of the factor t
s
2 dt
t .

(make a comment about \ (t ) being a section of a bundle on Mg ,1?)
(5) Show that \ (t ) satisfies the functional equation

\

(
1
t

)
= t

1
2 \ (t ).
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Intuitively then the “multiplicative” functional equation for \ becomes an “ad-
ditive” functional equation for Z . (this argument is very vague and doesn’t)
The functional equation for \ can be established in a number of ways (some
more abstract than others), but the generalizable argument follows from the
Poisson summation formula

Theorem 8. Let f be a Schwartz-class function and ˆf its Fourier transform. Then

∞∑︁
n=−∞

f (n) =
∞∑︁

m=−∞

ˆf (m).

Applying this theorem for f (u) = exp(−𝜋tu2) implies the above theorem.
f (u) in this case is a nice function with an easy Fourier-transform.

(6) Split the integral from part 4 up into a sum of integrals∫ ∞

0
(. . .) =

∫ 1

0
(. . .) +

∫ ∞

1
(. . .).

The on the first integral, use the functional equation on \ (t ) to relate it to
\ (1/t ). Simplify further with the substitution of t → 1/t in the first integral
and arrive at∫ ∞

0
(. . .) =

∫ ∞

1
(. . . \ (t ) . . .) t− s2+1 dt

t
+

∫ ∞

1
(. . . \ (t ) . . .) t s2 dt

t

which is manifestly symmetric under the change of variables s ↔ 1−s . Hence
arrive at the functional equation Λ(s ) = Λ(1 − s ).

For Dirichlet L-series the argument follows in a similar way

(1) This follows immediately from the definition, and that the characters are
mapped to roots of unity.

(2) As stated above, this doesn’t seem to have much interesting arithmetic content
(except maybe the residue of L(s , 𝜒0) at s = 1 which will contain arithmetic
content about the field Q(Zn).)

(3) At this point we need to distinguish between two different classes of Dirichlet
characters, those for which 𝜒 (−1) = 1 which we call even and 𝜒 (−1) = −1
which we call odd.

Λ(𝜒,s ) = 𝜋
s
2 Γ( s

2
)L(𝜒,s ) 𝜒 even

Λ(𝜒,s ) = 𝜋
s+1
2 Γ( s + 1

2
)L(𝜒,s ) 𝜒 odd

We will see later that the distinction between even and odd characters will
be related to the reality of the character on Gal(Q(Zn)/Q). This is an indi-
cation that the extra factors of 𝜋 and Γ appearing in Λ has some important
arithmetic content relating to the infinite places of the field K = Q.

(4) We can define the \-function

\𝜒 (t ) =
∞∑︁

n=−∞
𝜒 (n) exp(−𝜋n2t )

for 𝜒 even note that if 𝜒 is odd, then the above function becomes trivial be-
cause exp(−𝜋n2t ) is even in n. In order to alleviate this, we replace exp(−x2)
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with the odd counterpart x exp(−x2) and define the theta function for odd
characters 𝜒 :

\𝜒 (t ) =
∞∑︁

n=−∞
n𝜒 (n) (−it ) 1

2 exp(−𝜋n2t )

We can then compare terms and re-express L(s , 𝜒) as an integral from 0 to
∞ of some expression involving \𝜒 .

(5) We derive a functional equation for \𝜒 as we did for the Riemann \-function.
At this point though, we need to restrict to primitive characters

Definition 6. A character 𝜒 : (Z/nZ)× → C× is called primitive if it is not
induced from a character 𝜒 : (Z/mZ)× → C× for some m | n, m < n. A
modulus for 𝜒 is an m such that 𝜒 defines a character on (Z/nZ)×, and the
conductor is the minimal modulus.

If 𝜒 is not primitive, then we can write L(𝜒,s ) = L(s , 𝜒) · C where C is
some finite product over Euler factors of primes. Hence even though we are
restricting ourselves to primitive characters, we’re not losing out on too much
by making this restriction.

Remark 5. Even though we can re-express a non-primitive character’s
L-function in terms of a primitive character’s L-function, the conductor (which
will show up in the functional equation) will show up. So somehow the L-
function of 𝜒 knows about 𝜒 .

Returning now to the functional equation for \𝜒 , let N be the conductor
of 𝜒 . Then we can write (for 𝜒 even)

\𝜒 (t ) =
∑︁

b ∈Z/N Z
𝜒 (b)

(∑︁
l ∈Z

exp(−𝜋(lN + b)2t )
)
.

Though we can’t apply the Poisson summation formula for the full sum defin-
ing \𝜒 because of the factors of 𝜒 (n) in front of the terms, the inner sums
can be re-evaluated using Poisson summation to arrive At∑︁

k ∈Z

1

N
√
it

exp(−𝜋 k2

N 2t
)

with an extra coefficient of (combining the 𝜒 (b) from before, with terms
arriving from the Fourier transform of the shifted-Gaussian)∑︁

b ∈Z/N Z
𝜒 (b) · exp(2𝜋ikb)/N .

Replacing b with k−1b (and noting that this can always be done by some
business about character theory) we get that

𝜒 (k−1)
∑︁

b ∈Z/N Z
𝜒 (b) · exp(2𝜋ib)/N = 𝜒 (k−1)

∑︁
b ∈Z/N Z

𝜒 (b) · ZbN

Where we now use the notation 𝜏(𝜒) for the above Gauss-sum.
The final functional equation for (even) \𝜒 is

\𝜒 (t ) =
𝜏(𝜒)
N
√
it
\𝜒−1

(
1
N 2t

)
.
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(6) Now finally apply the same trick using the integral representation from (4)
by splitting the integral up as∫ ∞

0
=

∫ ∞

1
N

+
∫ 1

N

0

(note that 1/N = 1/N 2 (1/N )) and applying the functional equation for \𝜒 .
We arrive at the functional equations

Λ(𝜒,s ) = 𝜏(𝜒)N −sΛ(𝜒−1,1 − s )
Λ(𝜒,s ) = (−i )𝜏(𝜒)N −sΛ(𝜒−1,1 − s )

for even and odd 𝜒 . Note the appearance of the conductor, and the arith-
metically interesting Gauss-sum in the functional equation. We’ll see that this
is a general pattern for more complicated L-functions.

Anyway, now we return to the main goal: Class field theory over Q. We will do
this next lecture, among other things. Note in the above arguments on Dirichlet
L-functions, I largely followed

dirichlet_Lfunctions
[Gar], and

dirichlet_theorem_proof
[Min].

6. Lecture 6, Matej Penciak, 7/22
sec:lect6

The goal of this lecture is to state class field theory over Q in terms of Dirichlet
L-functions as we defined in the last lecture, and see what the formulation will look
like in general for class field theory over general number fields in terms of the to-be-
defined Hecke L-functions. We will also end with a brief overview of the kinds of
calculations that go into the proof of the analytic continuation of Hecke L-functions.

We first begin, as we usually do, with some remarks about last time

Remark 6. (1) First, I want to point out that
neukirchANT
[Neu99] has an execellent chapter

on L-functions where all of the considerations above and below are treated
in great detail. As part of his treatment of the subject, he has a very general
consideration about how functional equations for \-functions lead immedi-
ately to the functional equations for L-functions. The general statement goes
something like the following (which Neukirch refers to as the “Mellin Princi-
ple”):

Associated to a nice function f we can define an L-function which we
denote L( f ,s ) via the formula

L( f ,s ) =
∫ ∞

0
( f (y) − f (∞))y s

dy
y

where f (∞) := limy→∞ f (y) (assumed to exist because f is nice). Then the
Mellin principle states that if f satisfies the functional equation

f ( 1
y
) = C yk g (y)

for some other nice function g and a constant C , then the associated L-
functions satisfy

L( f ,s ) = CL(g ,k − s ).
We can therefore restrict our attention to the definition and functional equa-
tions of \-functions to derive any of the analytic continuation properties of
L-functions from here on out
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(2) So far these Γ-factors appearing in the formulas for analytic continuation
have been a necessity and have been fairly unmotivated. For example, for the
Z function a quick way to see where the Γ function comes from is by starting
with its integral form and doing a change of variables y ↦→ 𝜋n2y :

Γ(s ) =
∫ ∞

0
e−y y s

dy
y

=

∫ ∞

0
e−𝜋n

2y𝜋sn2s y s
dy
y

then re-arranging terms

𝜋−sΓ(s ) 1
n2s

=

∫ ∞

0
e−𝜋n

2y y s
dy
y

and summing over n. For now, my speculation is that since the Z function in
some sense encodes the local information about finite primes, then by some
form of product identity ∏

a

∥a∥a = 1

the information can be also gathered for infinite places.

Ok now we return to our original goal. Let K /Q be an abelian extension, and
introduce the Artin L-function associated to a character 𝜌 : Gal(K /Q) → C× as

L(𝜌,s ) =
∏

p prime

(
1 − 𝜌(Frobp) (Nm p)−s

)−1

where Nm p is the absolute norm from K to Q of the prime p. The above definition
is not entirely precise as stated. Either we restrict the product to be over unramified
primes, in which case Frobp is well-defined, or we need to modify the local factor at
ramified primes. Solution 1 is perhaps the easiest, but it prevents the L-function from
having a nice formula for its functional equation. Solution 2 took Artin some time to
figure out, but in the end isn’t terribly complicated.

First note that if p is a prime lying over p in Z, then Frobp is naturally an element
of Gal(OK /p/Z/pZ) which we can identify with Dp/Ip where Dp is the decomposition
group of p (the subgroup of Gal(K /Q) which fixes p) and Ip is the inertia group
(the normal subgroup of Dp which fixes elements of p point-wise). If 𝜌 is a character
of Gal(K /Q) we can restrict it to a character of Dp, and the value of 𝜌(Frobp) will
depend only on this restriction. Now restrict to the case when p is unramified. For
unramified p, the inertia group Ip is trivial, so usiing the above remarks we can re-write
the 1-dimensional representation 𝜌 as

𝜌(Frobp) =
(
ResGal(K /Q)

Dp
𝜌

)
(Frobp) =

(
ResGal(K /Q)

Dp
InfDp

Dp/Ip 𝜌
)
|CIp (Frobp)

where Res and Inf are the restriction and inflation to subgroups from quotient groups
respectively, and in the last formula we are restricting the representation onto the
subspace CIp of vectors fixed by Ip. It is this last formula which is well-defined even
for ramified primes, and what we take to be the coefficient of (Nm p)s in the formula
for the Artin L-function.

Having made the above modification on the the local factors at ramified primes, we
can finally state the Kronecker-Weber theorem (which is in essence class field theory
over Q) as an equality of L-functions:
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Theorem 9 (Kronecker-Weber, v. 2). Let K be an abelian extension of Q, and
𝜌 : Gal(K /Q) −→ C× a character, then there is a unique primitive Dirichlet character 𝜒 on
(Z/N Z)× such that we have an equality of L-functions

L(𝜌,s ) = L(𝜒,s )
where the left hand side of the equality is an Artin L-function, and the right is a Dirichlet
L-function.

We see that the original formulation of Kronecker-Weber follows as a corollary of
the above statement (in fact, it seems relatively clear that the two are equivalent)

Corollary 1. Any abelian extension K is contained in a cyclotomic extension Q(ZN ) for
some N .

Proof. If we write G = Gal(K /Q), and define

ZK (s ) =
∑︁

I ideal inOK

1
(Nm I )s =

∏
p prime

(1 −Nm p−s )−1

it can be shown that
ZK (s ) =

∏
𝜌∈Ĝ

L(𝜌,s ) =
∏
𝜒

L(𝜒,s )

where the second equality comes from the above Kronecker-Weber theorem. Let N
be the least common multiple of all the conductors f𝜒 for the characters 𝜒 .

Now we have the following chain of implications: p splits in Q(ZN ) if and only
if p ≡ 1 mod N . Therefore 𝜒 (p) = 1 for every character 𝜒 appearing in the above
product of Dirichlet L-series. By Kronecker-Weber, we therefore know that 𝜌(Frobp ) =
1 for every character 𝜌 ∈ Ĝ , and hence Frobp = Id in G . Hence p ∈ Spl(K ).

The containment Spl(Q(ZN )) ⊆ Spl(K ) implies, by the theorem from the first Brian
lecture, that Q(ZN ) ⊆ K . □

Remark 7. (1) The Artin L-function doesn’t have a naively defined series expen-
sion as

∑ an
ns unless we go out of our way to factor all the ideas I =

∏
p.

The Kronecker-Weber theorem implies that in fact the series expansion for
the Artin L-function is actually just that of a carefully chosen Dirichlet L-
function.

(2) The L-functions and Z -functions from above all contain interesting arithmetic
information about the field K . For example writing ZK as

ZK (s ) =
∑︁
I

1
Nm I s

=
∑︁
n

rK (n)
ns

where rK (n) is the number of ideals in OK of norm n. For example rK (p) =
[K : Q] if and only if p splits completely, and rK (p) = 1 if and only if p is
totally ramified. This theorem gives us some “generalized congruence condi-
tions” for the splitting of primes in abelian extensionf of Q as was one of our
original goals.

(3) This theorem can be used to prove that the Artin L-function has a functional
equation, but my understanding is that this is a generally known fact inde-
pdendent of the knowledge of Kronecker-Weber. The theorem does imply
that Artin L-series for Abelian extensions are meromorphic functions on C
though, which is a special case of the Artin conjecture.
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Example 7. Lets see quadratic reciprocity (again). Let K = Q(
√︁
q ∗) where q ∗ =

(−1)q−1/2q . We know that we can identify Gal(K /Q) as the group of order 2 given By

Gal(K /Q) =
(
Z/qZ

)
/
(
Z/qZ

)×2

and the group has two characters, the trivial character 𝜒0 and the non-trivial character
𝜒1 which is exactly given by

𝜒1 (n) =
(
n
q

)
We can expand

ZK (s ) =
∏

p prime

(1 −Nm(p)−s )−1

=
∏
p split

(
1 − p−s

)−2
∏
p inert

(
1 − p−2s

)−1 ∏
p ramified

(
1 − p−s

)−1

We also know that we can expand the Z -function as

ZK (s ) = L(𝜒0,s ) · L(𝜒1,s )

=
∏
p
p≠q

(
1 − p−s

)−1
∏
p

(
1 −

(
p
q

)
p−s

)−1

Comparing the coefficients of the above two expressions, we see that
p ramifies ⇐⇒ p | q
p splits ⇐⇒

(
p
q

)
= 1

p is inert ⇐⇒
(
p
q

)
= −1

but by elementary algebraic number theory, we know that all we need to do is factor
the polynomial x2 − q ∗ modulo p in which case we arrive at

p ramifies ⇐⇒ p | q
p splits ⇐⇒

(
q ∗

p

)
= 1

p is inert ⇐⇒
(
q ∗

p

)
= −1

which is exactly quadratic reciprocity.

Now what about class field theory over general number fields? We’ll formulate it
as an equality of L-functions, one of which will be the same Artin L-function from
above. We must only find a generalization of Dirichlet L-series to L-series defined in
terms of characters on the ray class groups Cm we defined previously. This is exactly
what Weber (and in a more general context, Hecke) did. In particular, we can easily
define a Weber-character to be a character 𝜒 : Cm −→ C×. Since Cm is finite, its image
must land in the image of unit complex numbers of finite multiplicative order.

It should be noted that Weber characters generalize Dirichlet characters in the
obvious way, with the on remark that since

Cn � (Z/nZ)× /{±1}
Cn∞ � (Z/nZ)×
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we see the difference of even and odd Dirichlet characters as coming from the inclu-
sion and exclusion of the real place in the defining modulus.

A generalization of the Weber character was produced by Hecke. Its definition
using ideal-theoretic language is pretty complicated to state, so I will delay precisely
defining Hecke characters (also known as größencharaktere). For now though, the
vague idea of a Hecke character is that it’s a multiplicative character

𝜒 : I S (m)K −→ C×

which can be written as a product 𝜒 = 𝜒∞𝜒 f where 𝜒 f is a character of finite order,
and 𝜒∞ is a map

𝜒∞ : (K ⊗ R)× �
(
R×

)r1 ⊗ (
C×

)r
2 −→ C×

not necessarily of finite order. Therefore 𝜒 may not be of finite order. The prototypical
example of this situation is the character on ideals of Z given By

𝜒 ((n)) = 𝜒 (n)
(
n
|n |

)p
for p = 0 or p = 1 depending on if 𝜒 is even or odd (coming from Cn or Cn∞ as seen
above). This extra 𝜒∞ factor fixes the fact that 𝜒 ((n)) may not be defined if we choose
a different generator for the ideal. Again, this definition is somewhat mysterious to
me even at this point, so we’ll return to it later once we have some more of the adelic
language under our belt.

Whether we take the Weber or Hecke approach, in either case we can define the
L-series

L(𝜒,s ) =
∑︁

a integral

𝜒 (a)
Nm(a)s .

Then class field theory, interpreted as a statement about L-functions, is simply the
statement that

LW (𝜒,s ) = LA (𝜌,s ).
(i.e. that for any character 𝜌 of your galois group Gal(L/K ) there exists a Weber
character 𝜒 blahblahblah). In particular, this interpretation implies that the isomor-
phism

Cm −→ Gal(L/K )
[p] ↦→ Frobp (at least for unramified primes)

is the explicit isomorphism that Takagi was missing. Artin’s original motivation was a
formulation of non-abelian class field theory, which he unfortunately did not achieve.
But he did get this explicit isomorphism (the Artin symbol from before), so I’d say
that’s a pretty decent consolation prize.

We’ll end this lecture with a comment about the analytic continuation of the Hecke
L-functions. This is pretty much taken verbatim from the second lecture in the lecture
notes

kowaskilectures
[Kow]. In particular, we’ll be restricting as the author does to the case of 𝜒 = 𝜒0

so that L(𝜒,s ) = ZK (s ). First write

ZK (s ) =
∑︁

a∈Cl(K )
Z (s ; a)

where

Z (s ; a) =
∑︁
[a]=a

1
Nm(a)s .
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Then let
Λ(s ; a) = 𝜋−r1s/2 (2𝜋)−r2sΓ(s/2)r1Γ(s )r2 Z (s ; a)

which we will show satisfies the functional equation

Λ(s ; a) = |D |1/2−sΛ(1 − s , (ad)−1)

where d is the different ideal. It’s worth mentioning what the different is. First, the
definition that seems to be the most common is as follows:

The trace paring Tr(−−) is a quadratic form on OK , and d−1 = {x ∈ OK |Tr(xy) ∈
OK for every y}. More geometrically, the discriminant is simply the ramification di-
visor on the base, and the different ideal is the branch locus divisor on the branched
cover.

To see where this functional equation comes from we’ll follow the lead from pre-
vious proofs of the functional equation and try to find a \-function with appropriate
functional equation given by the Poisson summation formula. To this end restrict
further to the case we’re taking the trivial ideal class a = 1 (corresponding to [OK ]).
Hence ideals are principal, and correspond to elements z ∈ O/O×. For each real and
complex embedding 𝜎 we can define

(d𝜎𝜋)d𝜎s/2Γ(d𝜎s/2) |z |−s𝜎 =

∫ ∞

0
exp(−d𝜎𝜋y |z |2𝜎)y s/2

dy
y

where d𝜎 = 1 for real 𝜎 and 2 for complex. We can write

Λ(s ; O) =
∫

Θ1 (y ; O)∥y ∥s/2
dy
y

where ∥y ∥ = ∏
a |y |daa and dy

y =
∏

a
d |y |a
|y |a and

Θ1 (y ; O) =
∑︁

z ∈O/O×
z≠0

exp

(
−𝜋

∑︁
a

yada |z |2a

)
.

The theta function above Θ1 isn’t quite a theta function in the traditional sense, since
it’s not a sum over a lattice. But what we can do instead is to split the integral up
into an integral over t = ∥y ∥ first, and what we’re left with is an integral over the
unit sphere G1 = {y | ∥y ∥ = 1}. By the Dirichlet unit theorem the rank of O× is
r1 + r2 − −1, and hence G1/O× is compact. So we can split the integral up in the
following schematic way∫ ∑︁

O/O×
=

∫ ∞

0
dt

∫
G1/O×

dy
y

∑︁
O×

∑︁
O/O×

=

∫ ∞

0
dt

∫
G1/O×

∑︁
O

(. . .)

which leaves us with a sum which is a \-function in the traditional sense, given by

Θ(x ; O) =
∑︁
z ∈O

exp(−𝜋⟨|z |2,x⟩)

for x ∈ (R+)r1+r2 and ⟨x ,y⟩ = ∑
a daxaya , and |z |2 = ( |z |2a)a . It is this Θ which can be

analyzed using the Poisson summation formula to obtain a functional equation.
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7. Lecture 7, Matej Penciak, 8/13
sec:lect7

The goal of this lecture is to arrive at a formulation for class field theory for local
fields. We’ll see that historically this first came via the global formulation, but we
will end at a truly local definition that can be used to re-derive global class field
theory via a local-to-global analysis. In this lecture I’m largely following the historical
development in

history_of_cft
[Con], in particular sections 7 and 8.

First we begin by casting quadratic reciprocity in a new light. For a,b ∈ Q×a intro-
duce the Hilbert symbol:

(a,b)a =
{
1 if a = x2 − by2 has a solution in Q×a
−1 else

Note that equivalently (a,b)a = 1 when ax2+by2 = z 2 has a solution in Za . The Hilbert
symbol is eminently generalizable to more settings outside the context of quadratic
reciprocity or even reciprocity theorems in general. For example, this is an example
of a Steinberg symbol (a consequence of the properties stated below), and is part of
Matsumoto’s computations of K2 for fields.

The Hilbert symbol satisfies the following properties:

(a,b)a = (b ,a)a
(a,−a)a = (a,1 − a)a = 1

(aa ′,b)a = (a,b)a (a ′,b)a .

The first two properties are more or less obvious from the definition, but the last
property is by no means clear. The proof relies on a clever application of Hensel’s
lemma and some basic principles of arithmetic geometry. The next property is in fact
equivalent to Quadratic reciprocity: For every a,b in Qa∏

a

(a,b)a = 1.

In fact, from the definition it is possible to nail down the exact expression for (a,b)a ,
for any inputs a and b . Quadratic reciprocity then follows from the following calcu-
lations. First, it can be shown that for odd primes p and q , p ≠ q , the Hilbert symbol
(a,b)a = 1 for all a ≠ 2,p ,q ,∞. Finally, quadratic reciprocity then follows from the
explicit calculations

(p ,q )2 = (−1)
p−1
2

q−1
2

(p ,q )∞ = 1

(p ,q )q =
(
p
q

)
The upside to this formulation of quadratic reciprocity is that:

• All the places are taken on an equal footing
• We can rephrase the value of the symbol (a,b)a in terms of the solvability of
a = NmL (𝛽 ) for some 𝛽 ∈ L = Q(

√
b). This gets us close to Artin reciprocity,

as the reciprocity map’s kernel is exactly the norms of elements coming from
field extensions.
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In fact, continuing on the the logic from the second item above, we can view (a,b)q
as a map:

Qq (
√
b)∗/

(
Qq (
√
b)∗

)2
−→ {±1} = Gal

(
Qq (
√
b)/Qq

)
.

So the Hilbert symbol plays the role of some sort of Local Artin Map (or the inverse
of it). In fact, this is exactly generalized in the following way

Definition 7. Let L/K be an abelian extension and 𝛼 ∈ K ×, and a a place in K .
Define (𝛼,L/K )a via the following procedure:

Choose an isomorphism

Gal (L/K )
(−,L/K )m←→ I S (m)/RS (m)

for some choice of modulus m.
When a is finite, choose 𝛼0 ∈ K × such that:

(1) orda

( 𝛼0
𝛼
− 1

)
≥ orda (m) if a ∈ m

(2) gcd( 𝛼0
𝛼
, a) = 1 if a ∉ m

(3) ord𝜔 (𝛼0 − 1) ≥ ord𝜔 (m) for 𝜔 finite not equal to a in the support of m.
(4) u (𝛼0) > 0 for real u in the support of m.

Factor 𝛼0 into a product of primes, and let a be the m-coprime part. Define

(𝛼,L/K )a = (a,L/K )−1
m .

When a is infinite, let (𝛼,L/K )a be complex conjugation if

(1) Ka is real.
(2) La/Ka is a complex extension.
(3) 𝛼 < 0.

Otherwise let (𝛼,L/K )a be the identity.

This is a complicated procedure to calculate the Artin symbol, but lets do some
examples to see how it’s not so bad.

Example 8. Lets calculate (−1,Q(i )/Q)a for various places a: Choose the modulus
m = 4∞. With this modulus, we are identifying the Ray class group with the units in
Z/4Z, which we can write as {±1}. First:

(−1,Q(i )/Q)∞ = −1 (complex conjugation)
because −1 < 0. Next, to calculate (−1,Q(i )/Q)2 we need to choose an 𝛼0 such that
ord2 ( 𝛼0

−1 − 1) ≥ 2, and 𝛼0 > 0 (there is no additional condition 2 from above because
the only finite place in the support of m is 2) It’s easy to see 3 will exactly satiisfy this
property, so

(−1,Q(i )/Q)2 = (Frob3)−1 = −1.

For any odd prime p, to calculate (−1,Q(i )/Q)p we want an 𝛼0 so that:

(1) gcd
( 𝛼0
−1 ,p

)
= 1

(2) ord2 (𝛼0 − 1) ≥ 2
(3) 𝛼0 > 0.

We can simply take 𝛼0 = 1, which yields the identity so

(−1,Q(i )/Q)p = 1

for odd p .
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We can also calculate (3,Q(i )/Q)a in the same way:

(3,Q(i )/Q)∞ = 1

because 3 > 0. Next, in order to calculate (3,Q(i )/Q)2 we need to find an 𝛼0 such
that 𝛼0 > 0 and ord2 (𝛼0/3 − 1) ≥ 2. I think the smallest 𝛼0 we can choose is 27, in
which case

(3,Q(i )/Q)2 = (Frob3)3 = −1.
And finally, (3,Q(i )/Q)3 we need an 𝛼0 > 0 with ord2 (𝛼0 − 1) ≥ 2 and gcd( 𝛼0

3 ,3) = 1.
𝛼0 = 39 works, and we see that

(3,Q(i )/Q)3 = Frob3 · Frob13 =

(
−1
3

) (
−1
13

)
= −1 · −1 = 1

From these examples we see that the “yoga” to find the Artin symbol is that we
want to find an 𝛼0 clsoe to 𝛼 at a, and close to 1 at the other places of m. Then use
the Frobenius of the m-coprime part.

In general, if p ∤ m then for 𝛼 ∈ K ×, let k = ordp (𝛼). It’s “easy” to show that
(𝛼,L/K )p = Frobp (L/K )k . The only complicated primes to calculate the Artin symbol
are the ramified primes, which is as expected.

Also note that (𝛼,L/K )a = 1 for a ∤ m and ordp (𝛼) = 0, hence only finitely many
of the symbols are not equal to 1. So the following theorem makes sense.

Theorem 10. The following product formula holds:∏
a

(𝛼,L/K )a = 1

Now we will address the clear downside to this approach to the local Artin symbol:
We first need to choose a modulus, use global class field theory, and only then can
we calculate it. Our overall goal is to first understand local Artin reciprocity, which is
easier to state (and should be easier to prove). Only then do we want to derive global
Artin reciprocity.

The next perspective on the local Artin symbol comes closer to this goal, but still
falls short as we will see:

Let E/F be an abelian extension of local fields, and identify F = Ka for some
global field K and place a (this is the bad part!). It can be shown that E = LKa for
some abelian extension L/K (though [L : K ] will not in general equal [E : F ]!).

For 𝛼 ∈ K ×, define (𝛼,E/F ) to be (𝛼,L/K )a . This defines a map

K × −→ Gal(E/F )
which is a-adically locally constent, and hence it extends to a map on K ×a = F ×.

Hence yielding the local Artin symbol

(−,E/F ) : F × −→ Gal(E/F ).
It can be shown that the definition is independent of the choices of L and K via

the functoriality of global class field theory. The following analogue of global class
field theory can also be shown:

Theorem 11. The local artin map 𝛼 ↦→ (𝛼,E/F ) is surjective on its image Gal(E/F )
with kernel NmE

F (E×).
Furthermore the image of O×F is the inertial group I (E/F ) so that

e (E/F ) = [O×F NmE
F (E

×) : NmE
F (E

×)] = [O×F : NmE
F (O

×
E )]
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and

f (E/F ) = [E : F ]
e (E/F ) = [F

× : O×F NmE
F (E

×)]

All of Takagi’s theorems on global class field theory also have their local analogues,
though the exact definition of the conductor is more complicated.

Moving on we now provide a totally local description of the Artin map, and hence
local class field theory. If E/F is unramified, it is easy to define the Artin map in
terms of the Frobenius element. So we’re essentially left, as usual, with dealing with
ramified extensions.

As we will see in the next lecture, a modern formulation of class field theory begins
with a study of group cohomology. The cohomology groups in equestion can be
viewed as Brauer groups describing K -algebras, and these K -algebras are precisely
given below:

Definition 8. Let L/K be a cyclic extension of degree n, 𝛼 ∈ K ×, and 𝜎 ∈ Gal(L/K )
a generator. Define the K -algebra A which is equal to the vector space

A = L ⊕ Lx ⊕ Lx2 ⊕ . . . ⊕ Lxn−1

with the product defined as

xn = 𝛼

x𝛾 = 𝜎(𝛾)x for 𝛾 ∈ L
We call A a cyclic algebra over K . We will denote A as (L/K ,𝜎,𝛼).
Example 9. Take the extension C/R, and let c be complex conjugation. Then for 𝛼 > 0
and 𝛼 < 0 all the algebras are isomorphic by scaling to the cases when 𝛼 = ±1. These
two algebras are:

• (C/R,c ,−1) � H
• (C/R,c ,1) � Mat2×2 (R)

The main theorem describing the structure of cyclic algebras of use to us is the
following:

Theorem 12. Let L/K , 𝛼, and 𝜎 be as above.
(1) (L/K ,𝜎,𝛼) is a simple K -algebra with center K , amd dimK = n2.
(2) (L/K ,𝜎,1) � Mat2×2 (K ) as a K -algebra.
(3) (L/K ,𝜎,𝛼) � (L/K ,𝜎, 𝛽 ) if and only if 𝛼/𝛽 ∈ NmL

K (L×)
(4) For gcd(t ,n) = 1, we if tu ≡ 1 mod n then

(L/K ,𝜎t ,𝛼) � (L/K ,𝜎,𝛼u )
Remark 8. Note the appearance of the norm in part (3) of the above theorem! This
is a first hint that these cyclic algebras may be helpful in describing local class field
theory.

In the special case when K is a local field we have the following classification result
which will be integral to stating class field theory:

Theorem 13. Every cyclic algebra over a local field F of characteristic 0 with dimension
n2 is of the form

(Fn/F,Frob, 𝜋a)
with Fn/F an unramified extension of degree n, 𝜋 a uniformizer of the maximal ideal of OF

and a ∈ Z.
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With this above theorem we are now prepared to define the Artin map:
NmFn

F (F
×
n ) is isomorphic to 𝜋nZ×O×F since Fn/F is unramified, so we can conclude:

(1) (Fn/F,Frob, 𝜋a) � (Fn/F,Frob, 𝜋b ) if and only if a ≡ b mod n. (part 3 above,
and knowing the norm map

(2) (Fn/F,Frob, 𝜋a) is independent of the choice of uniformizer 𝜋. (part 3 again,
and any two uniformizers differ by a unit in the image of the norm map)

So the number a mod n is an invariant of the cyclic algebra.
For E/F cyclic, consider A = (E/F,𝜎,𝛼) with invariant a mod n. Define the local

Artin symbol of the extension E/F as:

(𝛼,E/F ) = 𝜎a .

Note that as we change the generator 𝜎 of Gal(E/F ), the invariant a will also change
and the quantity 𝜎a is independent of our choices.

When E/F is a general abelian extension, we can write E = E1 · · ·Er with each
Ei/F cyclic, and we can can bootstrap up to general abelian extensions.

This is our desired local description of the Artin map. We end this section with
a computation of the local Artin symbol in the cases we already know the answer in
terms of our new definition:

Example 10. Let us first compute (−1,Q(i )/Q)a again: In this case n = [Q(i ) : Q] = 2,
and 𝜎 = −1 is the generator of {±1}. So the local Artin symbol will simply be (−1)a ,
where a is the invariant of the cyclic algebras constructed below. These are computed
as follows:

The algebra (Q(i )/Q,𝜎,−1) is HQ and it’s easy to see that Qa ⊗Q HQ � HQa
.

So when a = ∞, we get the cyclic algebra HR. Another way of describing this same
cyclic algebra is as (C/RR,c ,−1) which we already computed, and its invariant is 1
mod 2.

For the place a = 2, we are interested in

HQ2 = (Q2 (i )/Q2,c ,−1)

But the extension Q2 (i )/Q2 is ramified, so this is not an appropriate description to
calculate the invariant. One can show that a good replacement is:

HQ2 � (Q2 (
√
−3)/Q,c ,2)

which is unramified with invariant 1 mod 2.
Finally, for odd primes p, we can always solve −1 ≡ x2 + y2 mod p and hence −1

is a sum of squares in Qp by Hensel’s lemma. Therefore

HQp � Mat2×2 (Qp ) = (Qp (i )/Qp ,c ,1)

and hence the invariant is 0 mod 2. Hence in this case we recover what we had
before.

8. Lecture 8, Matej Penciak, 8/18
sec:lect8

In this lecture we will give a modern formulation of class field theory that starts
first with local class field theory, and then derives the global reciprocity map out of
it. This local-to-global process is governed by the algebraic object we will introduce
known as the adéles and idéles. We start though with some abstract nonsense about
group cohomology. Note the following development of class field theory is common
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between a number of different sources, but we are most closely following Kedlaya’s
online textbook

kedlaya_book
[Ked]

Let G be a finite group, and M a G -module. Let H i (G ;M ) be the right derived
functors of the left-exact MG (invariants), and Hi (G ;M ) the left derived functors of
the right-exact MG = M /{gm − m |g ∈ G ,m ∈ M } (coinvariants). We can define the
norm map from coinvariants to invariants by:

NmG : MG −→ MG

m ↦→
∑︁
g ∈G

g · m

Given a short exact sequence of G -modules 0 → M ′ → M → M ′′ → 0, the
norm map allows us to piece together the long exact sequences in cohomology and
in homology:•This is not right, but I’m too

tired to actually write the cor-

rect LES (copy the one below

and plug in the definitions)

. . .→ H1 (G ;M ′) −→ ker NmG

IG
−→ M ′′G

NmG M ′′
−→ H 1 (H ;M ′) → . . .

So if we define the Tate cohomology groups as

H i
T (G ;M ) =


H−i−1 (G ;M ) i < −1
ker NmG /IG i = −1
MG /NmG M i = 0
H i (G ;M ) i > 0

Then the above bi-infinite long exact sequence can be written as

. . .→ H i−1
T (G ,M ′′) → H i

T (G ;M ′) → H i
T (G ;M ) → H i

T (G ,M ′′) → . . .

With this notation, the fundamental result of “abstract class field theory” is that
there is a functorial isomorphism

H i
T (G ;M ) � H i+2

T (G ;M )

for cyclic groupsG . (more generally, for groups satisfyingH 1 (H ,M ) = 0 and #H 2 (H ,M ) =
#H for all subgroups H of G ).

Once this abstract form of class field theory is derived in general, the concrete
statements of local class field theory follow from the calculations that

#H 0
T (Gal(L/K );L×) = [L : K ]

and
#H −1

T (Gal(L/K ),L×) = 1.

These are equivalent to the first and second fundamental inequalities that we consid-
ered as classical motivation for class field theory in lecture 4. In fact, there is a certain
poetry in the fact that the key number theoretic insight in this modern formulation of
class field theory comes from fundamental inequalities considered in the 19th century
perspective on class field theory.

Having established these inequalities, we can define the local Artin map as coming
from the above functorial isomorphism for a local field extension L/K :

H 0
T (Gal(L/K );L×) ∼−→ H −2

T (Gal(L/K ),L×)

K ×/NmL×
∼−→ H1 (Gal(L/K ),L×) � Gal(L/K )ab
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Having established local class field theory, the way we glue it all together to global
class field theory is via the introduction of the ring of Adéles.

First, the ring of finite adeles Af in
K for a global field K is defined in any of the

following equivalent ways:

(1) ÔK ⊗OK K

(2) lim→
𝛼

1
𝛼

ÔK

(3) The “restricted product”
∏′

p finite
place

Kp where all but finitely many components are

in OKp
.

These three definitions translate to the following three well-known descriptions of
the rational adéles:

(1) Ẑ ⊗Z Q
(2) lim→

n

1
n
Ẑ

(3) The restricted product
∏′

p

Qp where all but finitely many components are in

Zp .
The full ring of adéles has an additional factor for the completions at real infinite
places: AK = Af in

K ×
(
K ⊗Q R

)
.

There are many embeddings of K into its ring of adéles. There is one for each

place K ↩→ Ka ↩→ AK , and also a diagonal embedding K
Δ
↩→ AK . We endow AK with

the structure of a topological ring with the 1
𝛼
ÔK serving as a fundamental system of

open neighborhoods of 0. The two kinds of the inclusions above endow K with a
topology inherited as a subspace, and the topologies will coincide with the a-adic and
discrete topologies for each kind of inclusion respectively.

An equivalent formulation for the topology on A is given by the description of
open sets: All open sets are of the form

∏
Ui ×

∏
Oa where Ui ⊆ Kai are open sets,

and the first product is over a finite subset of places.
We can also define the adelic S -integers for S a finite set of places: AK ,S ⊆ AK

where the elements are integral outside the set S . We can also define the function
| · |K : AK → R built out of the a-adic valuations

|x |K =
∏
a

|x |a .

The product formula implies that |𝛼 |K = 1 for all 𝛼 ∈ K ⊆ AK via the diagonal
embedding.

Proposition 2. Let K be a global field and AK its ring of adeles.
(1) The image of K in AK via the diagonal embedding is discrete.
(2) AK /K is compact. (making K ⊆ AK a discrete lattice)
(3) Let S be a finite set of places, and Ua be an open set in Ka for every place a ∈ S .

Then K ∩ (⋂a∈S Ua) ≠ ∅. (compare this to the approximation theorem)

Now we define the idéles: It is given by the restricted product
∏′

Ka where all
but finitely many components are in O×Ka

. Denote the set of Ideles as IK . Note that
IK ↩→ AK set-theoretically, but IK does not inherit its topology as a subset of AK . It is
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better to think of IK = GL1 (AK ). (in fact, if we embed IK ⊆ AK ×AK via t ↦→ (t ,t−1),
then the topologies match up.)

Define the idéle class group as CK = IK /K ×. The relation to our previous notion of
class group and ray-class group is as follows: Given a modulus m, we can define a
subgroup of IK given by tuples (𝛼a)a where

(1) 𝛼a > 0 if a ∈ m and a is real.
(2) 𝛼a ≡ 1 mod pe where pe ∥m (divides exactly).

Such a subgroup of IK is open, and its quotient is isomorphic to the ray class group
Cm. In this way we see that IK is a universal object that parametrizes between all of
the ray class groups.

The function | · |K on AK from before can be further defined on IK , and by the
product formula it descends to a function on the idéle class group CK . The following
is a major theorem on the idéle class group that can be proved independently, but
implies many of the fundamental finiteness theorems in classical algebraic number
theory. For example, the theorem below implies that Cl(K ) is finite, and the Dirichlet
unit theorem that states the units in OK form an abelian group with free part of finite
rank r1 + r2 − 1 (as we had seen before).

Theorem 14. Let C ◦K be the kernel of | · |K : CK → R×. Then C ◦K is compact.

Finally, after having built up the machinery of adéles and idéles, we return to class
field theory at the end of this lecture. Having established the above local form of
Artin reciprocity we can now turn to the global picture. Let L/K be a field extension,
then this field extension defines an embedding AK ↩→ AL (inducing IK ↩→ IL). We
also get the “wrong-way maps”:

TrLK : AL −→ AK
NmL

K : AL −→ AK
defined in terms of the trace and the norm coming from the field extension L/K and
all of its completions L𝜔/Ka for a place 𝜔 of L over a.

The norm map on AL preserves the idéles and the diagonal, so it defines a map

NmL
K : CL −→ CK

The final statements of class field theory can be stated in this language as:

Theorem 15. Let K be a global field.

(1) There is a map
rK : CK −→ Gal(K ab/K )

which induces an isomorphism for each extension L/K :

rL/K : CK /NmL
K (CL)

∼−→ Gal(L/K )ab

(2) For every open subgroup H ⊆ CK , of finite index, there is an abelian extension L/K
with H = NmL

K CL .
(3) The map rK is induced by the map

r̃K : IK −→ Gal(L/K )
defined by

r̃K ((𝛼a)a) =
∏
a finite

(𝛼a ,L/K )a ·
∏
a real

sgn(𝛼a)
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where each (𝛼a ,L/K )a is the local Artin symbol at place a.

Note the structure of this theorem, and compare it to the goals Brian layed out
in the first lecture where our definition of “arithmetic of K ” should be expanded to
include the idéle class group CK .

Remark 9. (1) The first goal of classifying finite abelian extensions of K in terms
of the arithmetic of K is achieved by part (2) of the theorem. We can now
say that the finite abelian extensions are in one to one correspondence with
finite index open subgroups of CK . Recalling the classification stated above
that open subgroups of CK are classified by a choice of modulus m, we see
this part is equivalent to the existence and completeness parts of Takagi’s
statements of class field theory.

This part is similar to the corresponding statements in infinite Galois the-
ory about open subgroups of the absolute Galois group. In fact, one of the
original motivations for the adéles and idéles was in the study of infinite class
field theory, and it was only later that its applications to global class field
theory were spelled out.

(2) Part (1) of the theorem can now be seen as a realization of the Galois group
Gal(L/K ) in terms of the arithmetic of K .

(3) To achieve the third goal of describing the decomposition of primes in abelian
extensions, we need an explicit description of the isomorphism rK . We see
this follows from the definition of the reciprocity map r̃K as coming from the
local Artin symbols, and their definitions in terms of Frobenius elements (at
least in the unramified cases).

We also end this lecture with a look ahead at the lectures to come.

(1) The adélic language offers a natural path to move from arithmetic of number
fields to the geometry of Riemann surfaces. We will see what a geometric class
field theory should look like.

(2) Finally, it behooves us to describe the relation between the L-function theo-
retic statements of class field theory and the adélic perspective. We will get
in this direction by looking at adélic L-functions, which we will begin with
next time in the context of Tate’s thesis.

(3) At this point we are very close to writing down a formulation of class field
theory that is what is generalized to non-Abelian extensions in the context
conjectures in the Langlands program.

9. Lecture 9, Matej Penciak, 10/??
sec:lect9

The goal of this lecture is to treat Tate’s thesis.
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